Synthesis of Dibromoacetyl Derivatives by Use of Benzyltrimethylammonium Tribromide

Shoji Kajigaeshi,* Takaaki Kakinami,† Hajime Tokiyama,† Takahiro Hirakawa,† and Tsuyoshi Окамото†

Department of Industrial Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755

[†]Department of Industrial Chemistry, Ube Technical College, Tokiwadai, Ube 755 (Received December 24, 1986)

Synopsis. The reaction of acetyl derivatives with double the molar quantity of benzyltrimethylammoniun tribromide in dichloromethane-methanol solution at room temperature gave dibromoacetyl derivatives in fairly good yields.

© 1987 The Chemical Society of Japan

Organic ammonium tribromides are considered to be mild and selective brominating agents.1) These reagents have a merit in that they can be quantitatively treated, compared with liquid bromine, because of their solid character. Previous work in this series2) has shown that monobromoacetyl derivertives are readily obtained from reactions of acetyl derivatives with tetrabutylammonium tribromide (TBA Br₃) under mild conditions. In the present paper, we wish to report the syntheses of dibromoacetyl derivatives (1) by the use of a new reagent, benzyltrimethylammonium tribromide (BTMA Br₃).

Results and Discussion

The reaction of benzyltrimethylammonium chloride with bromine in dichloromethane gave BTMA Br₃. BTMA Br₃ was also prepared by the addition of hydrobromic acid to an aqueous solution of benzyltrimethylammonium chloride and sodium bromate in good yield.

The reaction of acetyl derivatives (2) with double the molar quantity of BTMA Br₃ in a dichloromethane-methanol solution for 2-7 h at room temperature gave 1 readily. The results are summarized in the Table 1.

$$\begin{array}{c}
\text{RCOCH}_{3} \xrightarrow{\text{2PhCH}_{2}(\text{CH}_{3})_{3}\text{N}^{+}\text{Br}_{3}^{-}} \\
& \xrightarrow{\text{in CH}_{2}\text{Cl}_{2}^{-}\text{CH}_{3}\text{OH rt}}
\end{array}$$
RCOCHBr₂

Table 1. Dibromoacetyl Derivatives (1) from Acetyl Derivatives (2)

	Starting material (2)	Product (1)	Reaction time/h	Yielda)	$\frac{IR(KBr) \ \nu(CO)}{cm^{-1}}$	$Mp \theta_m/^{\circ}C$	
						Found	Reported
а	©-cocн ³	O-cochbr ₂	2	86	1695	33.5—34.5	36³)
b	сн ₃ -О-сосн ₃	CH ₃ -COCHBr ₂	2	88	1690	99—99	1004)
c	сн ₃ о-О-сосн ₃	CH ₃ O-COCHBr ₂	2	87	1680	93—94	93—945)
d	сн 30	CH ₃ O COCHBr ₂	2	89	1690	67—68	_
e	с1-О-сосн ₃	C1-COCHBr ₂	7	89	1695	92.5—93.5	92.56)
f	Br-O-COCH3	Br-O-COCHBr ₂	7	82	1700	92—93	92—937)
g	NO ₂ -COCH ₃	NO ₂ -O-COCHBr ₂	7	83	1700	63—65	67.48)
h	NO ₂ —COCH ₃	NO ₂ —COCHBr ₂	7	88	1710	56—57	59%)
i	©© COCH3	COCHBr ₂	4	89	1695	100—101	10110)
j	CH ₃ CH ₃	CH ₃ CH ₃ -C-COCHBr ₂ CH ₃	7	75	1725	73.5—74	74.511)

a) Yield of isolated product.

When an equimolecular amount of BTMA Br₃ was used with **2**, monobromoacetyl derivatives **3** were obtained in the same manner as when using TBA Br₃.²⁾ However, the reaction of **2**, with double the molar quantity of TBA Br₃ gave **1** as a byproduct, together with the main product **3**¹²⁾ Therefore, it turned out that the brominating effect of BTMA Br₃ is stronger than that of TBA Br₃. Nevertheless, BTAM Br₃ could not further brominate **1** to tribromoacetyl derivatives at room temperature.

Because the presence of methanol markedly facilitated the bromination of 2, it can be presumed that active species which generate Br^+ is probably methyl hypobromite produced from the reaction of BTMA Br_3 with methanol. In fact, we confirmed the evolution of hydrogen bromide by the addition of methanol to BTMA Br_3 at room temperature.

$$\begin{split} & \text{PhCH}_2(\text{CH}_3)_3\text{N}^+\text{Br}_3^- + \text{CH}_3\text{OH} \\ & \longrightarrow & \text{PhCH}_2(\text{CH}_3)_3\text{N}^+\text{Br}^- + \text{CH}_3\text{OBr} + \text{HBr} \\ & \textbf{2} + 2\text{CH}_3\text{OBr} \longrightarrow \textbf{1} + 2\text{CH}_3\text{OH} \end{split}$$

In general, derivatives 1 such as phenacylidene dibromide (a material for mandelic acid), were prepared from acyl derivatives and bromine.³⁾ By our method, 1 was easily obtained under mild conditions.

Experimental

Benzyltrimethylammonium Tribromide (BTMA Br₃). To a solution of benzyltrimethylammonium chloride (11.1 g, 60 mmol) and sodium bromate (4.5 g, 30 mmol) in water (100 ml) was added hydrobromic acid (47 %, 180 mmol) under stirring at room temperature. A precipitated solid was extracted with dichlormethane (50 ml×4). The organic layer was dried with magnesium sulfate and evaporated in vacuo to leave a residue which was recrystallized from dichloromethane-ether (10:1) to give BTMA Br₃ as orange crystals; yield 18.2 g (78 %); mp 100—101 °C. Found: C, 30.69; H, 4.11; N, 3.76; Br, 61.44 %. Calcd for C₁₀H₁₆NBr₃: C, 30.80; H, 4.14; N, 3.59; Br, 61.47 %.

Phenacylidene Dibromide (1a): Typical procedure. To a solution of acetophenone (2a) (0.5 g, 4.16 mmol) in dichloromethane (50 ml)-methanol (20 ml) was added BTMA Br₃ (3.4 g, 8.74 mmol) at room temperature. The mixture was stirred for 2 hr until a decoloration of the orange solution took place. The solvent was distilled; the obtained precipitate was extracted with ether (40 ml \times 4). The ether layer was then dried with magnesium sulfate and evaporated in vacuo to give a residue which was recrystallized from methanol-water (1:2) affording 1a as colorless crystals; yield 1.0 g (86%); mp 33.5—34.5 °C (lit, 3) mp 36 °C).

2.2-Dibromo-3'-methoxyacetophenone (1d). Compound 1d was obtained as colorless needles; mp 67—68 °C. ¹H NMR (CDCl₃) δ =3.82 (3H, s, OCH₃), 6.70 (1H, s, CHBr₂), and 6.9—7.75 (4H, m, H_{arom}). Found: C, 35.00; H, 2.78; Br, 51.80 %. Calcd for C₉H₈O₂Br₂: C, 35.10; H, 2.62; Br, 51.89 %.

References

- 1) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," John Wily and Sons, New York (1967), Vol. 1, p. 967.
- 2) S. Kajigaeshi, T. Kakinami, T. Okamoto, and S. Fujisaki, *Bull. Chem. Soc. Jpn.*, **60**, 1159 (1987).
 - 3) H. Hunius, Ber., 10, 2010 (1877).
 - 4) A. Michaelis, Ber., 15, 186 (1882).
- 5) F. Kröhnke and K. Ellegast, *Chem. Ber.*, **86**, 1556 (1953).
 - 6) A. Collet, Bull. Soc. Chim. Fr., [3] 21, 70 (1899).
 - 7) A. Collet, Bull. Soc. Chim. Fr., [3] 31, 68 (1899).
 - 8) C. Engler and O. Zielke, Ber., 22, 204 (1889).
 - 9) C. Engler and E. Hassenkamp, Ber., 18, 2240 (1885).
- 10) R. Schweitzer, Ber., 24, 547 (1891).
- 11) R. Scholl, Liebigs Ann. Chem., 338, 24 (1905).
- 12) For example, the reaction of 4-methylacetophenone (2b) with double the molar quantity of TBA Br₃ in dichloromethane-methanol at room temperature gave a mixture of 2,2-dibromo-4'-methylacetophenone (1b) and 2-bromo-4'-methylacetophenone (3b) in the ratio of 1:2.5 on NMR spectra. The same treatment of 4-methoxyacetophenone (2c) afforded 2,2-dibromo-4'-methoxyacetophenone (1c) and 2-bromo-4'-methoxyacetophenone (3c) in the ratio of 1:2.